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Tracer diffusion of nonspherical colloidal particles
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(Received 14 August 1995

A general theory is presented to describe the effects of the direct interactions of a labeled nonspherical
colloidal particle with othelspherical or nonspherigaparticles diffusing around it, on the translational and
rotational tracer-diffusion properties of the former. Approximate, but general expressions are derived for these
dynamic properties in terms of static structural properties of the system, in the generic case in which the
particles with which the nonspherical tracer interacts are spherical. The specific use of these results is illus-
trated with the calculation of the rotational diffusion coefficient of a Brownian dipole that interacts with a
Brownian one-component plasma, and of an ellipsoidal polyion interacting with its own electrical double layer.
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PACS numbe(s): 82.70.Dd, 83.10.Pp, 05.46j, 66.10—x

One of the simplest tracer-diffusion phenomena is selflectrolyte friction effects on the translational diffusion of a
diffusion in monodisperse suspensions of spherical colloidatodlike polyion (tobacco mosaic virus, TMM[10]. Besides
particles, such as highly charged polystyrene sph@grely-  translating, however, a nonspherical tracer particle also ex-
balls) in water[1]. For these systems, scattering techniquescutesrotational Brownian motion, which is also afected by
allow the determination of properties such as the mearhe direct interactions with other particles diffusing around it.
squared displacemerf Ar(t)]%) and self-diffusion coeffi- Tracer-diffusion experiments involving nonspherical labeled
cient D [1-3]. These measurements have been interpretegiacer particles may include phenomena such as the Brown-
on the basis of theoretical results expressing these dynamign motion of a rodlike polyion interacting with its own elec-
properties in terms of the static structure facBfk) of the  trical double layer (electrolyte friction, or with other
suspension, and through this quantity, in terms of the effectspherical or not charged colloidal particles, and self-
tive forces between particlgg,5]. As an illustration, con- diffusion in ferrofluids. For this more general class of phe-
sider one of the simplest approximate expressions for th@omena, there is a total absence of simple expressions simi-
deviation of D" from its valueD? in the absence of direct |ar to Eq. (1) for quantities such as the rotational diffusion
interactions, namely6], coefficient. The reason for this derives in part from the math-
ematical complexity of the description of rotational Brown-
ian motion[11], even in the absence of direct interactions
with other particles. Thus, a statistical mechanical approach
is needed, whose fundamental and general character does not
Although approximate, results of this type are still general, inprevent the introduction of sensible approximations leading
the sense that no restriction to limiting conditigmeeak cou-  to results of the quality and practical use as Eg. In this
pling, low concentration, etcis involved, and no assump- letter we show that the GLE7] approach lends itself pre-
tion is made on the nature of the direct interactic@mulom-  cisely to this purpose.
bic, van der Waals, hard-sphere, g{cZ]. For this reason, Here we address mostly the general aspects of this theory,
they have made a significant contribution to our fundamentaivhich in principle describes the effects of the direct interac-
understanding of the dynamics of colloidal dispersions, bytions on the translationand rotational Brownian motion of
providing the theoretical interpretation of self-diffusion ex- a nonsphericaltracer particle interacting with other, in gen-
periments(or simulation$, in model systems such as poly- eral non-spherical, particles. We show, for example, that,
ball suspension$3] and concentrated hard-sphere suspenupon the introduction of an adequate extended notation, the
sions (where hydrodynamic interactions are also impontant general results of the theofqgs.(4a) and(4b)] are remark-

[6]. Furthermore, the extension of these results to polydisably similar to those of the previous version referring only to
perse suspensions have allowed their application to tracesuspensions of spherical particlgd. Thus, the next task is
diffusion in colloidal mixtureq8], and to the description of to introduce approximations that render these general results
electrolyte friction effectd9]. However, these results still useful in practice. This we do for a simple but interesting
involve one important restriction, namely, all the pairwisegeneric case, namely, a translating-rotating nonspherical
direct forces are assumed to be radially symmetric, andracer particle interacting with other spherical particles, for
hence, no expression analogous to Hg.exists, applicable which case we end up with general approximate expresions,
to nonspherical tracer particles. The only exception is thenalogous to Eq(1) (which then happens to follow as a
description of thetranslational Brownian motion of non- particular casg In order to illustrate its use down to specific
spherical particles interacting with other particles assumedesults, here we describe its application to two simple model
spherical, provided by the generalized Langevin equatiorsystems, namely, the rotational diffusion of a Brownian elec-
(GLE) approach 9], and employed in the description of the tric dipole interacting with a Brownian one-component
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plasma, and the problem of rotational electrolyte friction of &jinear function of the instantaneous fluctuatiosrs, (r,;t)
rodlike polyion (tobacco mosaic virysLet us first start our  of the local concentration, whereas the force and torque ex-
discussion with the general aspects of our theory. erted by the solvent can be written just as in the ordinary
Consider a nonspherical tracer particle in a suspension q_fangevin equation, i.e., as a dissipative plus a random term,
other nonspherical particles belonging to specieghe |atter assumed to have zero mean and time-correlation
@=12,....v, present_ at bulk concentranorm_a. Let function given by(f(t)f(O)}szT2525(t). In the present
Ya(r,(2) be the potential energy of the direct InteraCtlonstheory, the friction coeﬁicientfﬁ- enter as phenomenologi-

between the tracer and one of such particles of spegies ; ; .
cal parameters, determined either experimentally or from ex-

located at positiorr relative to the tracer’s center of mass, : : . .
d with princioal axis rotated b tatic with ¢ ternal theoretical considerations or assumptions. At the mo-
and with principal axis rotated by a rotaliGh with respect = ,one '\ye focus on the term representing direct interactions.

to the orientation of the tracer partideepresented, for ex- . > .
partideep Since [dV(t)/dt] couples to én(t), we need a time-

ample_,. by the j[hree Euler angle@—(qb,e,x)_]. Let evolution equation for the latter. For this, one appeals to the
N,(r, (1) be the instantaneous local corgg)entratlo(r;) Of Paryrinciples of the linear irreversible thermodynamic theory of
ticles of speciesa for the configurationri®(t), Q(t)  fyctuations[7,13,14, which allow us to write the structure
(i=1,... Ny;a=1,... v N,=number of particles of spe- f the most generaland exacttime evolution equation for
cies a) of the other particles, whose equilibrium ensemblema(r,ﬁ;t) consistent with Eq(2) above(in the sense ex-
averageng(r,Q)=(n,(r,Q;t)) equalsn,/Q far from the  pjained in Ref[7]). Such an equation, together with E&)
tracer particle 1 =/d(Q). Then, one can show that if the ijtself, constitute a closed system of stochastic equations de-
total interaction energy is pairwise additive, the i”Stanta'scribing the coupled time evolution equation ‘6(t) and

neous total dirgct forc&(t) and total direct torqu@'(t) ON  sn(t). Eliminating &n(t) from this description[7] finally
the tracer particle exerted by all the other particles can bg,-qs to the desired GLE

written exactlyas

F(t)=S2_ fdr fAQ[V yro(r, ) Ing(r,0i) - %: Es i)
and
_ _ - —ftAZ(t—t’)~V(t’)dt’+f(t) (3)
T(t) =2, _1/dr [dO[Vrot(r, Q) In,(r,Q;t) 0

with Veo=rxV+V,, Vg being the angular gradient op- Wwith f(t) grouping a random force and torque on the tracer,
erator[12]. On the other hand, le¥(t) and W(t) be the which turns out to have zero mean and time-correlation func-

linear and angular velocity of the tracer observed from theion given by (j(t)j(0))=kgTAZ(t), and with the time-
laboratory, but with components referred to a cartesian sySjependent friction function given b Z(t) = B[V #]-C(t)
tem with origin fixed to the laboratory, but whose orientationo[v»l//] with C(t) being the matrix of van Hove functions
coincides instantaneously with the orientation of the princi-C (r ,(Tr’ S?'t)=(5ng (r (Tt) ony(r’ 5_0» referred '
pal axis of the tracer part[iclﬁ. Then, ignoring kinetic termstoafhe’ tr:alcér’s, po_sitiona aﬁd,orierﬁati(’)nTHus b(t) i the
quadratic inV(t) andW(t) [11], the time-evolution equation ) ! ) e L
or V(O andi() can e witen,grouping he componerts S0 of e inearized dfusion exuston bl gvers
of V(t) andW(t) in a single vectol (t) = (V(t),W(t)), as tracer’'s reference frame, and whose initial condition is
V() C(0)=(én(0)én(0))y=0. Thus, the matrixs is the static
M. ———=—5V(t)+f(t)+[Vlesn(t) (2)  correlation of the variablesn,(r,Q;t). The matricesC(t)
dt - = and o define the collective-diffusion propagator as
o L - x()=C(t)eo~ 1, where 0! is the inverse ofs in the
where, with Elmllar notation,V=(V,Vgor), Mij=M&j;  gense that oo=U, Up(r, 1", 07) = 8,58(r—1") 5()
(1,j=1,2,3),Mjj=Gjjli 5 (i,] =4,5,6), WithM, 11, 12, I3 _ ') In terms of(t), this result forA Z(t) can be written
being the mass and principal moments of inertia of the tracef, (o alternative equivalent forms, by means of the ex-
particle, and{;; (i,j=1,2,...,6) being the friction coeffi- tended version of the exa¢Wertheim-Lovett's equation
cients coupling the solvent fotce and torque with the lineaf7 15, [V*ﬂ]: —kgTo~ L[ Vn®d], which read
and angular velocity, and whefét) groups the correspond-

ing random force and torque. The last term in B)is just AZ(t)=B[V lex(t)eae[ V], (4a)
(F(t), T(t)), in which we introduced the inner product a o
“o” (which denotes =,_,[dr[d()”) between the AZ(t)=kgT[Vne9oo Loy (t)o[ Vned]. (4b)

“vectors” ¢ and én(t) with “components” ¢,(r,{)) and

on,(r,Q;t) [=n,(r,Q;1)—nY(r,Q)], and where we have Equations(3) and (4) are the most general and important
recognized thaheq(r,a) does not contribute to the total "€sults of the present theory. With the notation employed to
force and torque.a write them, they are remarkably similar to the corresponding

Equation(2) is the basis of our theory, and expresses Jesults of the original GLE theor}y7], in which only trarls-
very Simp|e physica| idea: the force and the torque on thé&tiOﬂ&' diffusion of spherical tracers WHaS Consideredﬁf
tracer due tadirect interactions can be writteaxactlyas a  were provided, and if we could evaluat€ (t), other tracer-
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diffusion properties could be calculated, and compared withmixtures (#>1) is straightforward. In order to use E¢p)
experimental measurements. Thus, the relevance of theser specific calculations we require approximatiggk;t).
general results now depends on the actual possibility oWe adopt Fick's approximation, which for our case reads
evaluatingA Z(t) starting from either of Eqé4). This result

is exact, and writed Z(t) in terms only of the equilibrium x(k,t)=exp —k*D*t/S(k)]. (6)
static quantitiesy, n®d and o, and of the collective propa-

gatorx(t). The static properties are in principle amenable togquation(5) is still quite general for the generic system con-
experimental measurement or to theoretical calculation. Igjdered, and only involves the approximation of homogene-
contrast,x(t) is conceptually a well defined object, but its jty. Along with Fick’s approximation, Eq(5) now writes
determination does not seem straighforward even in prinAgi(t) in terms only of the structure factor of the host sus-
ciple. Thus, sooner or latter we have to resort to some fornpension and of the local concentratioff of spheres around

of approximation or assumption for this quantity, with the the tracer. The only other input required I, a simple
hope that even a simple but sensLbIe guesxfoy will lead  proposal for which, is to writeD* = D$+DS ., with D$

to reasonably accurate results g (t). There is not, how-  being the short-time diffusion coefficient of the spheres, and
ever, a unique and systematic manner to approxirgém D ., being the short-time mean diffusion coefficient of the
and different ansatz will lead to different results ¢ (t). tracer’s center of mass. E¢p) with (6) constitute the exten-
At this early stage of development of the present theory, weion of Eq. (1), as we now see.

can only illustrate the manner to proceed, by adopting the We are now ready to apply the approximate but general
simplest approximation foi(t), namely, Fick's diffusion results in Eqs(5) and (6) to specific systems. But before
approximation. This is defined by(t)=exd—Loo ], proceeding, let us mention that E¢p) alone fulfills a nice
with Laﬁ_(r,a,r’,@) = S,5V*- B*ner,0)-V*s(r  and simple self-consistency test. Consider first the particular
— 1) 8(Q-Q"), in which ¥* = (V,IxV), andf)'z are phe- case in which the tracer particle is also spherical. Then, from

. . . . Eq. (5) we find that Algrot(t)=0, and that
nomenological parameters, for which a sensible assumptlo'r:Tq (_ _ h ROTA A
must be made. If we adopt this or a similar closure, wed £ (D =A()=ALP1). From AZ°PXt) one can then

i . o calculate the other relevant tracer-diffusion properties of the
finally have a closed expression far{(t) in terms only of spherical tracer, in particular its long-time tracer-
the static quantities, n°@ and o, and of the phenomeno- it sion coeficiént Dl=kgT/[ {5+ AP, with AZSPh
logical parameterg® and D7, . In this manner, we have es- — r=qA ¢SP(t). [In fact, if the tracer is identical to the other
tablished an approximate, but completely general connectiogpheres, this result is precisely Ed).] Let us now imagine
between equilibrium static properties and the dynamic prophat two of these spherical tracers are now rigidly bound to
erties describing tracer-diffusion of nonspherical particles. each other to constitute a dumbbell, with a center-to-center
The practical application of the general results above tQjistancd . Now consider that this is our non-spherical tracer
specific systems and conditions is still not stralghtforward,partide, diffusing in the same host suspension of spheres. If
mainly because the determinationrd ando constitutesby | g sufficiently large, n®%r)~ng(/r—(1/2)2))g(r

itself a highly nontrivial statistical mechanical problem +(112)2)), wherenggh(r)=ng(r) is the local concentration

[12,16. Thus, at this stage, we can only illustrate the type of ¢ 1ot spheres around a single sphere of the type in the

results that can be obtained from our theory by restrictingy , ppell. Using this result far®%(r) in Eq. (5), we find that
ourselves to the ;implest nontrivial generic case, With thghe functionsA Z;(t) for the long dumbbell can be expressed,
purpose of illustrating the protocol to be followed in particu- leading order il ~%, in terms of A¢SPN(t) for a single

lar applications. Wi.th this a!m,_ let us consider from now on sphere. In particular, we find that the dumbbell’s static fric-
the most symmetric but still important case, in which thetion coefficients A= [ZAZ (t)dt are given, in terms of
tracer particle is nonspherical, but is axisymmetric, and theAgsph by A¢ =Ag|v =20A§S|ph and A¢ =,(I2/2)A§Sph
other particles are spherical. In addition, let us approximatei_his r’esglt i Lhowell/er intuiti’vely expeRcCt)gd ’

o and(t) by their value far from the tracer partiolomo- Now let us apply the generic results above to a relatively

ggnelty appromeatfoh For axisymmetric trace_rs mteract_mg simple and idealized problem, to illustrate the use of the
with spheresA £(t) in Eq(4b) turns out to be diagonal, with  present theory down to specific results. Consider a point

Al=A0=AL,, Als=Af), A474_4:A4755:AQVRO_T and  glectric dipole of magnitudg embedded in a hard sphere of
Age=0. The use of the homogeneity approximation allows,aqiysa, which diffuses with a short-time friction coefficient

us to rewrite E4b) in terms of the nonzero elements of ;s iy 5 suspension of charged spheres modelled by the

A{(t) as Brownian one-component plasniBOP), i.e., pointlike par-
ticles of chargeQ in a rigid background of opposite charge
AL(t) = kBTnJ' Ak (k) x(k,t) f(K) 5) to ensure electroneutrality. Although pointlike with respect

: (2m)3 ! S(k) ! to interactiongtheir pair potential is justi(r)=Q?/r], we

assume that their short-time diffusion coeffici@t is finite.
with  fi(k)=k(k) (i=L1), k,h(k) (i=]), and Within the Debye-Huakel approximation for this system,
[kxVh(k)], (i=ROT), whereh(k) is the Fourier trans- S(k) andn®9(r) can be calculated analytically, thus allowing
form (FT) of h(r)=n®%r)/n—1, S(k) the static structure us to evaluate the integrals in E&) with (6). The results for
factor of the fluid of spheres, i.e, the FT@{|r—r’|)/n, and  A{;(t) cannot be expressed in closed analytic form, although
x(k,t) is the FT ofx(|r—r’|;t). We only display the results they are reduced to quadratures. For the static friction coef-
for a monodisperse suspension of spheres; the extension ficients, however, we find that
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1 wu? (ka)?(2+ ka) tion is only through the functioG(«b, ¢), defined in detail

AL =387 3007 3 [T+ ra+ (r@)ZB2 /) elsewherd17], which has a maximun at a certain valug
of the inverse Debye lengtk. Applied to TMV, this result

w? ka(2/3+ ka) ® predicts a deviation 0D gor=KkgT/ ({7t AlroT) from its

valueD3o=kgT/{% o7 Which is stronger than that predicted
(and observef10]) for the translational diffusion coefficient
where k=47BnQ? is the inverse Debye length and D.m ., and which occurs at an electrolyte concentration
D*=D%+DY (D%=kgT/¢). Let us mention that the same around 10 times larger. These are rather distinct quantitative
result is obtained if instead of the BOP we consider a pointpredictions whose experimental testing is certainly acces-

AlroT= g% 3 11 rat (xa)2/3]2 "

like model of an electrolyte(Brownian multicomponent
plasma, only that nowxk= 478" _,n,q3/€, q, being the
charge of ions of species and e the dielectric constant of
the solvent. Thus, if a tracer particle of radiasbears an
electric dipole of magnitudg, and diffuses in an electrolyte
solution, Eqs(7) and (8) allow us to calculate the effect of

sible[10].

We are also in the process of applying the GLE theory to
the description of translational and rotational diffusion of a
rodlike tracer particlde.g., TMV) in a suspension of highly
charged colloidal particleg.g., polyballs. Similarly we are
extending the realm of the practical applications of this gen-

the friction due to the interaction between the dipole and itsral theory to the simplest example of a less symmetric ge-

electrical double layefelectrolyte friction) on the transla-
tional and rotational diffusion coefficients.

neric case, namely, self-diffusion in a model ferroflal
Brownian dipolar fluig, in which case the particles around

We have also calculated the electrolyte friction effects onyne tracer interact through a nonradially symmetric potential.

another simple but experimentally more relevant model non

spherical tracer particle, namely,

(homogeneity, Fick’s diffusion, and Debye-ekel approxi-
mationg, cannot be written in closed analytic fofrh7]. For
A¢, andA{, however, we recover the results of Vizcarra-
Rendonet al. [9], which already have been compared with
experimental measurements of tli@verage translational
diffusion coefficient D, of the tobacco mosaic virus
(TMV) [10]. The result for A{got can be written as
Alror=Q%a’'G(kb, ¢)/12¢D* whereQ is the total charge
along the distance & between the foci of the ellipsoid,
whose minor and major semiaxis doeand a(= ¢b). The
dependence on thlectrolyte ionic charge and concentra-

In both cases we pretend to compare first with Brownian

. . a hard ellipsoid with a IInedynamics simulations, but we believe that there are no fun-
of charge between its foci. The results of the present theory

at the same level of approximation as the previous exampl

damental difficulties for the eventual comparison with the
fheasurement of these effects in real experimental systems.
We consider, however, that already the general results and
the specific illustrations presented here constitute an impor-
tant step in the process of building a solid theoretical de-
scription of the effects of the direct interactions on the

Brownian motion of nonspherical tracer particles.
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