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A general theory is presented to describe the effects of the direct interactions of a labeled nonspherical
colloidal particle with other~spherical or nonspherical! particles diffusing around it, on the translational and
rotational tracer-diffusion properties of the former. Approximate, but general expressions are derived for these
dynamic properties in terms of static structural properties of the system, in the generic case in which the
particles with which the nonspherical tracer interacts are spherical. The specific use of these results is illus-
trated with the calculation of the rotational diffusion coefficient of a Brownian dipole that interacts with a
Brownian one-component plasma, and of an ellipsoidal polyion interacting with its own electrical double layer.
@S1063-651X~96!50705-1#

PACS number~s!: 82.70.Dd, 83.10.Pp, 05.40.1j, 66.10.2x

One of the simplest tracer-diffusion phenomena is self-
diffusion in monodisperse suspensions of spherical colloidal
particles, such as highly charged polystyrene spheres~poly-
balls! in water @1#. For these systems, scattering techniques
allow the determination of properties such as the mean
squared displacement^@Dr (t)#2& and self-diffusion coeffi-
cientDL @1–3#. These measurements have been interpreted
on the basis of theoretical results expressing these dynamic
properties in terms of the static structure factorS(k) of the
suspension, and through this quantity, in terms of the effec-
tive forces between particles@4,5#. As an illustration, con-
sider one of the simplest approximate expressions for the
deviation ofDL from its valueD0 in the absence of direct
interactions, namely@6#,

DL

D0 5F11
1

48p3nE d3k@S~k!21#2G21

. ~1!

Although approximate, results of this type are still general, in
the sense that no restriction to limiting conditions~weak cou-
pling, low concentration, etc.! is involved, and no assump-
tion is made on the nature of the direct interactions~coulom-
bic, van der Waals, hard-sphere, etc.! @7#. For this reason,
they have made a significant contribution to our fundamental
understanding of the dynamics of colloidal dispersions, by
providing the theoretical interpretation of self-diffusion ex-
periments~or simulations!, in model systems such as poly-
ball suspensions@3# and concentrated hard-sphere suspen-
sions ~where hydrodynamic interactions are also important!
@6#. Furthermore, the extension of these results to polydis-
perse suspensions have allowed their application to tracer-
diffusion in colloidal mixtures@8#, and to the description of
electrolyte friction effects@9#. However, these results still
involve one important restriction, namely, all the pairwise
direct forces are assumed to be radially symmetric, and
hence, no expression analogous to Eq.~1! exists, applicable
to nonspherical tracer particles. The only exception is the
description of thetranslational Brownian motion of non-
spherical particles interacting with other particles assumed
spherical, provided by the generalized Langevin equation
~GLE! approach@9#, and employed in the description of the

electrolyte friction effects on the translational diffusion of a
rodlike polyion ~tobacco mosaic virus, TMV! @10#. Besides
translating, however, a nonspherical tracer particle also ex-
ecutesrotationalBrownian motion, which is also afected by
the direct interactions with other particles diffusing around it.
Tracer-diffusion experiments involving nonspherical labeled
tracer particles may include phenomena such as the Brown-
ian motion of a rodlike polyion interacting with its own elec-
trical double layer ~electrolyte friction!, or with other
~spherical or not! charged colloidal particles, and self-
diffusion in ferrofluids. For this more general class of phe-
nomena, there is a total absence of simple expressions simi-
lar to Eq. ~1! for quantities such as the rotational diffusion
coefficient. The reason for this derives in part from the math-
ematical complexity of the description of rotational Brown-
ian motion @11#, even in the absence of direct interactions
with other particles. Thus, a statistical mechanical approach
is needed, whose fundamental and general character does not
prevent the introduction of sensible approximations leading
to results of the quality and practical use as Eq.~1!. In this
letter we show that the GLE@7# approach lends itself pre-
cisely to this purpose.

Here we address mostly the general aspects of this theory,
which in principle describes the effects of the direct interac-
tions on the translationaland rotational Brownian motion of
a nonsphericaltracer particle interacting with other, in gen-
eral non-spherical, particles. We show, for example, that,
upon the introduction of an adequate extended notation, the
general results of the theory@Eqs.~4a! and~4b!# are remark-
ably similar to those of the previous version referring only to
suspensions of spherical particles@7#. Thus, the next task is
to introduce approximations that render these general results
useful in practice. This we do for a simple but interesting
generic case, namely, a translating-rotating nonspherical
tracer particle interacting with other spherical particles, for
which case we end up with general approximate expresions,
analogous to Eq.~1! ~which then happens to follow as a
particular case!. In order to illustrate its use down to specific
results, here we describe its application to two simple model
systems, namely, the rotational diffusion of a Brownian elec-
tric dipole interacting with a Brownian one-component

PHYSICAL REVIEW E MAY 1996VOLUME 53, NUMBER 5

531063-651X/96/53~5!/4306~4!/$10.00 R4306 © 1996 The American Physical Society



plasma, and the problem of rotational electrolyte friction of a
rodlike polyion ~tobacco mosaic virus!. Let us first start our
discussion with the general aspects of our theory.

Consider a nonspherical tracer particle in a suspension of
other nonspherical particles belonging to species
a51,2,. . . ,n, present at bulk concentrationna . Let
ca(r ,V̄) be the potential energy of the direct interactions
between the tracer and one of such particles of speciesa
located at positionr relative to the tracer’s center of mass,
and with principal axis rotated by a rotationV̄ with respect
to the orientation of the tracer particle@represented, for ex-
ample, by the three Euler anglesV̄5(f,u,x)#. Let
na(r ,V̄;t) be the instantaneous local concentration of par-
ticles of speciesa for the configurationr i

(a)(t), V i
(a)(t)

( i51, . . . ,Na ; a51, . . . ,n; Na5number of particles of spe-
ciesa) of the other particles, whose equilibrium ensemble
averagena

eq(r ,V̄)[^na(r ,V̄;t)& equalsna /V far from the
tracer particle (V5*dV̄). Then, one can show that if the
total interaction energy is pairwise additive, the instanta-
neous total direct forceF(t) and total direct torqueT(t) on
the tracer particle exerted by all the other particles can be
written exactlyas

F~ t !5(a51
n *dr*dV̄@¹ca~r ,V̄!#na~r ,V̄;t !

and

T~ t !5(a51
n *dr*dV̄@“ROTca~r ,V̄!#na~r ,V̄;t !

with “ROT[r3“1“V , “V being the angular gradient op-
erator @12#. On the other hand, letV(t) andW(t) be the
linear and angular velocity of the tracer observed from the
laboratory, but with components referred to a cartesian sys-
tem with origin fixed to the laboratory, but whose orientation
coincides instantaneously with the orientation of the princi-
pal axis of the tracer particle. Then, ignoring kinetic terms
quadratic inV(t) andW(t) @11#, the time-evolution equation
for V(t) andW(t) can be written, grouping the components
of V(t) andW(t) in a single vectorV¢ (t)5„V(t),W(t)…, as

MJ •
dV¢ ~ t !

dt
52 zJs•V¢ ~ t !1 f¢~ t !1@¹W c#+dn~ t ! ~2!

where, with similar notation,¹W 5(“,“ROT), MJ i j5Md i j
( i , j51,2,3),MJ i j5d i j I i23 ( i , j54,5,6), withM , I 1 , I 2 , I 3
being the mass and principal moments of inertia of the tracer
particle, andzJ i j

s ( i , j51,2,. . . ,6) being the friction coeffi-
cients coupling the solvent force and torque with the linear
and angular velocity, and wheref¢(t) groups the correspond-
ing random force and torque. The last term in Eq.~2! is just
„F(t), T(t)…, in which we introduced the inner product
‘‘ +’’ ~which denotes ‘‘(a51

n *dr*dV̄’’ ! between the
‘‘vectors’’ c and dn(t) with ‘‘components’’ ca(r ,V̄) and
dna(r ,V̄;t) @[na(r ,V̄;t)2na

eq(r ,V̄)#, and where we have
recognized thatna

eq(r ,V̄) does not contribute to the total
force and torque.

Equation~2! is the basis of our theory, and expresses a
very simple physical idea: the force and the torque on the
tracer due todirect interactions can be writtenexactlyas a

linear function of the instantaneous fluctuationsdna(r ,V̄;t)
of the local concentration, whereas the force and torque ex-
erted by the solvent can be written just as in the ordinary
Langevin equation, i.e., as a dissipative plus a random term,
the latter assumed to have zero mean and time-correlation
function given by^ f¢(t) f¢(0)&5kBTzJs2d(t). In the present
theory, the friction coefficientszJ i j

s enter as phenomenologi-
cal parameters, determined either experimentally or from ex-
ternal theoretical considerations or assumptions. At the mo-
ment, we focus on the term representing direct interactions.
Since @dV¢ (t)/dt# couples to dn(t), we need a time-
evolution equation for the latter. For this, one appeals to the
principles of the linear irreversible thermodynamic theory of
fluctuations@7,13,14#, which allow us to write the structure
of the most general~and exact! time evolution equation for
dna(r ,V̄;t) consistent with Eq.~2! above~in the sense ex-
plained in Ref.@7#!. Such an equation, together with Eq.~2!
itself, constitute a closed system of stochastic equations de-
scribing the coupled time evolution equation ofV¢ (t) and
dn(t). Eliminating dn(t) from this description@7# finally
leads to the desired GLE

MJ •
dV¢ ~ t !

dt
52 zJs•V¢ ~ t !1 f¢~ t !

2E
0

t

D zJ~ t2t8!•V¢ ~ t8!dt81 j¢~ t ! ~3!

with j¢(t) grouping a random force and torque on the tracer,
which turns out to have zero mean and time-correlation func-
tion given by ^ j¢(t) j¢(0)&5kBTD zJ(t), and with the time-
dependent friction function given byD zJ(t)5b@¹W c#+C(t)
+@¹W c#, with C(t) being the matrix of van Hove functions,
Cab(r ,V̄,r 8,V̄8;t)[^dna(r ,V̄;t)dnb(r 8,V̄8;0)&, referred
to the tracer’s position and orientation. Thus,C(t) is the
solution of the linearized diffusion equation that governs the
diffusive relaxation of dna(r ,V̄;t), as described from the
tracer’s reference frame, and whose initial condition is
C(0)5^dn(0)dn(0)&[s. Thus, the matrixs is the static
correlation of the variablesdna(r ,V̄;t). The matricesC(t)
and s define the collective-diffusion propagator as
x(t)[C(t)+s21, where s21 is the inverse ofs in the
sense thats21+s5U, Uab(r ,V̄,r 8,V̄8)5dabd(r2r 8)d(V̄
2V̄8). In terms ofx(t), this result forD zJ(t) can be written
in two alternative equivalent forms, by means of the ex-
tended version of the exact~Wertheim-Lovett’s! equation
@7,15#, @¹W c#52kBTs21+@¹W neq#, which read

D zJ~ t !5b@¹W c#+x~ t !+s+@¹W c#, ~4a!

D zJ~ t !5kBT@¹W neq#+s21+x~ t !+@¹W neq#. ~4b!

Equations~3! and ~4! are the most general and important
results of the present theory. With the notation employed to
write them, they are remarkably similar to the corresponding
results of the original GLE theory@7#, in which only trans-
lational diffusion of spherical tracers was considered. IfzJs

were provided, and if we could evaluateD zJ(t), other tracer-
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diffusion properties could be calculated, and compared with
experimental measurements. Thus, the relevance of these
general results now depends on the actual possibility of
evaluatingD zJ(t) starting from either of Eqs.~4!. This result
is exact, and writesD zJ(t) in terms only of the equilibrium
static quantitiesc, neq ands, and of the collective propa-
gatorx(t). The static properties are in principle amenable to
experimental measurement or to theoretical calculation. In
contrast,x(t) is conceptually a well defined object, but its
determination does not seem straighforward even in prin-
ciple. Thus, sooner or latter we have to resort to some form
of approximation or assumption for this quantity, with the
hope that even a simple but sensible guess forx(t) will lead
to reasonably accurate results forD zJ(t). There is not, how-
ever, a unique and systematic manner to approximatex(t),
and different ansatz will lead to different results forD zJ(t).
At this early stage of development of the present theory, we
can only illustrate the manner to proceed, by adopting the
simplest approximation forx(t), namely, Fick’s diffusion
approximation. This is defined byx(t)5exp@2L+s21t#,
with Lab(r ,V̄,r 8,V̄8) 5 dab¹W * •DJ a* na

eq(r ,V̄)•¹W * d(r
2r 8)d(V̄2V̄8), in which¹W *5(“,r3“), andDJ a* are phe-
nomenological parameters, for which a sensible assumption
must be made. If we adopt this or a similar closure, we
finally have a closed expression forD zJ(t) in terms only of
the static quantitiesc, neq ands, and of the phenomeno-
logical parameterszJs andDJ a* . In this manner, we have es-
tablished an approximate, but completely general connection
between equilibrium static properties and the dynamic prop-
erties describing tracer-diffusion of nonspherical particles.

The practical application of the general results above to
specific systems and conditions is still not straightforward,
mainly because the determination ofneq ands constitutes by
itself a highly nontrivial statistical mechanical problem
@12,16#. Thus, at this stage, we can only illustrate the type of
results that can be obtained from our theory by restricting
ourselves to the simplest nontrivial generic case, with the
purpose of illustrating the protocol to be followed in particu-
lar applications. With this aim, let us consider from now on
the most symmetric but still important case, in which the
tracer particle is nonspherical, but is axisymmetric, and the
other particles are spherical. In addition, let us approximate
s andx(t) by their value far from the tracer particle~homo-
geneity approximation!. For axisymmetric tracers interacting
with spheres,D zJ(t) in Eq.~4b! turns out to be diagonal, with
Dz115Dz225Dz' , Dz335Dz i , Dz445Dz555DzROT and
Dz6650. The use of the homogeneity approximation allows
us to rewrite Eq.~4b! in terms of the nonzero elements of
D zJ(t) as

Dz i~ t !5
kBTn

~2p!3
E d3k f i~k!

x~k,t !

S~k!
f i~k! ~5!

with f i(k)5kxh(k) ( i5'), kzh(k) ( i5i), and
@k3“kh(k)#x ( i5ROT), whereh(k) is the Fourier trans-
form ~FT! of h(r )[neq(r )/n21 , S(k) the static structure
factor of the fluid of spheres, i.e, the FT ofs(ur2r 8u)/n, and
x(k,t) is the FT ofx(ur2r 8u;t). We only display the results
for a monodisperse suspension of spheres; the extension to

mixtures (n.1) is straightforward. In order to use Eq.~5!
for specific calculations we require approximatingx(k;t).
We adopt Fick’s approximation, which for our case reads

x~k,t !5exp@2k2D* t/S~k!#. ~6!

Equation~5! is still quite general for the generic system con-
sidered, and only involves the approximation of homogene-
ity. Along with Fick’s approximation, Eq.~5! now writes
Dz i(t) in terms only of the structure factor of the host sus-
pension and of the local concentrationneq of spheres around
the tracer. The only other input required isD* , a simple
proposal for which, is to writeD*5D1

s1D̄c.m.
s , with D1

s

being the short-time diffusion coefficient of the spheres, and
D̄c.m.
s being the short-time mean diffusion coefficient of the

tracer’s center of mass. Eq.~5! with ~6! constitute the exten-
tion of Eq. ~1!, as we now see.

We are now ready to apply the approximate but general
results in Eqs.~5! and ~6! to specific systems. But before
proceeding, let us mention that Eq.~5! alone fulfills a nice
and simple self-consistency test. Consider first the particular
case in which the tracer particle is also spherical. Then, from
Eq. ~5! we find that DzROT(t)50, and that
Dz'(t)5Dz i(t)[Dzsph(t). From Dzsph(t) one can then
calculate the other relevant tracer-diffusion properties of the
spherical tracer, in particular its long-time tracer-
diffusion coeficient DL[kBT/@zs1Dzsph#, with Dzsph

5*0
`dtDzsph(t). @In fact, if the tracer is identical to the other

spheres, this result is precisely Eq.~1!.# Let us now imagine
that two of these spherical tracers are now rigidly bound to
each other to constitute a dumbbell, with a center-to-center
distancel . Now consider that this is our non-spherical tracer
particle, diffusing in the same host suspension of spheres. If
l is sufficiently large, neq(r )'ng„ur2( l /2)ẑu…g„ur
1( l /2)ẑu…, wherensph

eq (r )5ng(r ) is the local concentration
of host spheres around a single sphere of the type in the
dumbbell. Using this result forneq(r ) in Eq. ~5!, we find that
the functionsDz i(t) for the long dumbbell can be expressed,
to leading order inl21, in terms ofDzsph(t) for a single
sphere. In particular, we find that the dumbbell’s static fric-
tion coefficientsDz i[*0

`Dz i(t)dt are given, in terms of
Dzsph, by Dz'5Dz i52Dzsph, and DzROT5( l 2/2)Dzsph.
This result is, however, intuitively expected.

Now let us apply the generic results above to a relatively
simple and idealized problem, to illustrate the use of the
present theory down to specific results. Consider a point
electric dipole of magnitudem embedded in a hard sphere of
radiusa, which diffuses with a short-time friction coefficient
zs, in a suspension of charged spheres modelled by the
Brownian one-component plasma~BOP!, i.e., pointlike par-
ticles of chargeQ in a rigid background of opposite charge
to ensure electroneutrality. Although pointlike with respect
to interactions@their pair potential is justu(r )5Q2/r #, we
assume that their short-time diffusion coefficientD0 is finite.
Within the Debye-Hu¨ckel approximation for this system,
S(k) andneq(r ) can be calculated analytically, thus allowing
us to evaluate the integrals in Eq.~5! with ~6!. The results for
Dz i(t) cannot be expressed in closed analytic form, although
they are reduced to quadratures. For the static friction coef-
ficients, however, we find that
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Dz'5
1

3
Dz i5

m2

30D* a3
~ka!2~21ka!

@11ka1~ka!2/3#2
, ~7!

DzROT5
m2

9D* a
ka~2/31ka!

@11ka1~ka!2/3#2
, ~8!

where k5A4pbnQ2 is the inverse Debye length and
D*5D01DT

0 (DT
05kBT/z

s). Let us mention that the same
result is obtained if instead of the BOP we consider a point-
like model of an electrolyte~Brownian multicomponent
plasma!, only that nowk5A4pb(a51

n naqa
2/e, qa being the

charge of ions of speciesa and e the dielectric constant of
the solvent. Thus, if a tracer particle of radiusa bears an
electric dipole of magnitudem, and diffuses in an electrolyte
solution, Eqs.~7! and ~8! allow us to calculate the effect of
the friction due to the interaction between the dipole and its
electrical double layer~electrolyte friction! on the transla-
tional and rotational diffusion coefficients.

We have also calculated the electrolyte friction effects on
another simple but experimentally more relevant model non-
spherical tracer particle, namely, a hard ellipsoid with a line
of charge between its foci. The results of the present theory,
at the same level of approximation as the previous example
~homogeneity, Fick’s diffusion, and Debye-Hu¨ckel approxi-
mations!, cannot be written in closed analytic form@17#. For
Dz' andDz i , however, we recover the results of Vizcarra-
Rendonet al. @9#, which already have been compared with
experimental measurements of the~average! translational
diffusion coefficient Dc.m. of the tobacco mosaic virus
~TMV ! @10#. The result for DzROT can be written as
DzROT5Q2a8G(kb,f)/12eD* whereQ is the total charge
along the distance 2a8 between the foci of the ellipsoid,
whose minor and major semiaxis areb and a(5fb). The
dependence on the~electrolyte! ionic charge and concentra-

tion is only through the functionG(kb,f), defined in detail
elsewhere@17#, which has a maximun at a certain valuekm

of the inverse Debye lengthk. Applied to TMV, this result
predicts a deviation ofDROT[kBT/(zROT

0 1DzROT) from its
valueDROT

0 [kBT/zROT
0 which is stronger than that predicted

~and observed@10#! for the translational diffusion coefficient
Dc.m. , and which occurs at an electrolyte concentration
around 10 times larger. These are rather distinct quantitative
predictions whose experimental testing is certainly acces-
sible @10#.

We are also in the process of applying the GLE theory to
the description of translational and rotational diffusion of a
rodlike tracer particle~e.g., TMV! in a suspension of highly
charged colloidal particles~e.g., polyballs!. Similarly we are
extending the realm of the practical applications of this gen-
eral theory to the simplest example of a less symmetric ge-
neric case, namely, self-diffusion in a model ferrofluid~a
Brownian dipolar fluid!, in which case the particles around
the tracer interact through a nonradially symmetric potential.
In both cases we pretend to compare first with Brownian
dynamics simulations, but we believe that there are no fun-
damental difficulties for the eventual comparison with the
measurement of these effects in real experimental systems.
We consider, however, that already the general results and
the specific illustrations presented here constitute an impor-
tant step in the process of building a solid theoretical de-
scription of the effects of the direct interactions on the
Brownian motion of nonspherical tracer particles.
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